一、高中常用导数公式表?
高中常用导数公式表如下:
原函数:y=c(c为常数),导数: y'=0;原函数:y=x^n,导数:y'=nx^(n-1);原函数:y=tanx,导数: y'=1/cos^2x;原函数:y=cotx,导数:y'=-1/sin^2x;原函数:y=sinx,导数:y'=cosx;原函数:y=cosx。
导数: y'=-sinx;原函数:y=a^x,导数:y'=a^xlna;原函数:y=e^x,导数: y'=e^x;原函数:y=logax,导数:y'=logae/x;原函数:y=lnx,导数:y'=1/x。
高中数学导数学习方法:
2.一般情况下,令导数=0,求出极值点;在极值点的两边的区间,分别判断导数的符号,是正还是负;正的话,原来的函数则为增,负的话就为减,然后根据增减性就能大致画出原函数的图像。根据图像就可以求出你想要的东西,比如最大值或最小值等。
3.特殊情况下,导数本身符号可以直接确定,也就是导数等于0无解时,说明在整个这一段上,原函数都是单调的。如果导数恒大于0,就增;如果导数恒小于0,就减。
二、高中求导数的公式有哪些?
高中数学求导公式表如下:
折叠基本函数推导过程:
这里将列举几个基本的函数的导数以及它们的推导过程:
⒈y=c(c为常数) y'=0
⒉y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
⒋y=logax(a为底数,x为真数) y'=1/x*lna
y=lnx y'=1/x
⒌y=sinx y'=cosx
⒍y=cosx y'=-sinx
⒎y=tanx y'=1/(cosx)^2
⒏y=cotx y'=-1/sin^2x
⒐y=arcsinx y'=1/√(1-x^2)
⒑y=arccosx y'=-1/√(1-x^2)
⒒y=arctanx y'=1/(1+x^2)
⒓y=arccotx y'=-1/(1+x^2)
⒔y=u^v ==> y'=v' * u^v * lnu + u' * u^(v-1) * v
引用的常用公式:
在推导的过程中有这几个常见的公式需要用到:
⒈y=f[g(x)],y'=f'[g(x)]·g'(x)【f'{g(x)}中g(x)看作整个变量,而g'(x)中把x看作变量】
⒉y=u/v,y'=(u'v-uv')/v^2
⒊y=f(x)的反函数是x=g(y),则有y'=1/x'
导数的起源:
(一)早期导数概念----特殊的形式大约在1629年,法国数学家费马研究了作曲线的切线和求函数极值的方法;1637年左右,他写一篇手稿《求最大值与最小值的方法》。在作切线时,他构造了差分f(A+E)-f(A),发现的因子E就是我们现在所说的导数f'(A)。
(二)17世纪——广泛使用的“流数术”17世纪生产力的发展推动了自然科学和技术的发展,在前人创造性研究的基础上,大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”,他称变量为流量,称变量的变化率为流数,相当于我们所说的导数。
牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》,流数理论的实质概括为:他的重点在于一个变量的函数而不在于多变量的方程;在于自变量的变化与函数的变化的比的构成;最在于决定这个比当变化趋于零时的极限。
(三)19世纪导数——逐渐成熟的理论1750年达朗贝尔在为法国科学家院出版的《百科全书》第四版写的“微分”条目中提出了关于导数的一种观点,可以用现代符号简单表示:
{dy/dx)=lim(oy/ox)。1823年,柯西在他的《无穷小分析概论》中定义导数:如果函数y=f(x)在变量x的两个给定的界限之间保持连续,并且我们为这样的变量指定一个包含在这两个不同界限之间的值,那么是使变量得到一个无穷小增量。
19世纪60年代以后,魏尔斯特拉斯创造了ε-δ语言,对微积分中出现的各种类型的极限重加表达,导数的定义也就获得了今天常见的形式。
(四)实无限将异军突起,微积分第二轮初等化或成为可能 微积分学理论基础,大体可以分为两个部分。一个是实无限理论,即无限是一个具体的东西,一种真实的存在;另一种是潜无限,指一种意识形态上的过程,比如无限接近。
三、高中导数公式
① C'=0(C为常数函数)
② (x^n)'= nx^(n-1) (n∈Q*);熟记1/X的导数
③ (sinx)' = cosx
(cosx)' = - sinx
(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2
-(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2
(secx)'=tanx·secx
(cscx)'=-cotx·cscx
(arcsinx)'=1/(1-x^2)^1/2
(arccosx)'=-1/(1-x^2)^1/2
(arctanx)'=1/(1+x^2)
(arccotx)'=-1/(1+x^2)
(arcsecx)'=1/(|x|(x^2-1)^1/2)
(arccscx)'=-1/(|x|(x^2-1)^1/2)
④(sinhx)'=coshx
(coshx)'=sinhx
(tanhx)'=1/(coshx)^2=(sechx)^2
(coth)'=-1/(sinhx)^2=-(cschx)^2
(sechx)'=-tanhx·sechx
(cschx)'=-cothx·cschx
(arsinhx)'=1/(x^2+1)^1/2
(arcoshx)'=1/(x^2-1)^1/2
(artanhx)'=1/(x^2-1) (|x|
还木有评论哦,快来抢沙发吧~